MATURA ROZSZERZONA MAJ 2025

FORMUŁA 2015

WYPEŁNIA ZDAJĄCY Miejsce na naklejkę. Sprawdź, czy kod na naklejce to E-100. Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

Egzamin maturalny

Formula 2015

MATEMATYKA

Poziom rozszerzony

Symbol arkusza
EMAP-R0-**100**-2505

DATA: **12 maja 2025 r.**

GODZINA ROZPOCZĘCIA: 9:00

CZAS TRWANIA: 180 minut

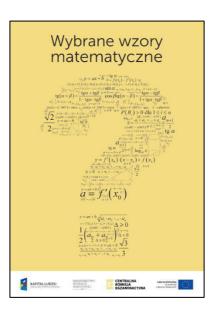
LICZBA PUNKTÓW DO UZYSKANIA: 50

Przed rozpoczęciem pracy z arkuszem egzaminacyjnym

- Sprawdź, czy nauczyciel przekazał Ci właściwy arkusz egzaminacyjny, tj. arkusz we właściwej formule, z właściwego przedmiotu na właściwym poziomie.
- 2. Jeżeli przekazano Ci **niewłaściwy** arkusz natychmiast zgłoś to nauczycielowi. Nie rozrywaj banderol.
- 3. Jeżeli przekazano Ci **właściwy** arkusz rozerwij banderole po otrzymaniu takiego polecenia od nauczyciela. Zapoznaj się z instrukcją na stronie 2.

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 29 stron (zadania 1–15). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Na pierwszej stronie arkusza oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 3. Odpowiedzi do zadań zamkniętych (1–4) zaznacz na karcie odpowiedzi w części przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. W zadaniu 5. wpisz odpowiednie cyfry w kratki pod treścią zadania.
- 5. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (6–15) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 6. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 7. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 8. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.
- 10. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 11. Możesz korzystać z *Wybranych wzorów matematycznych*, z cyrkla i linijki oraz z kalkulatora prostego. Upewnij się, czy przekazano Ci broszurę z okładką taką jak widoczna poniżej.



W każdym z zadań od 1. do 4. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Suma wszystkich pierwiastków wielomianu $W(x) = x^3 + 5x^2 - 7x - 11$ jest równa

- **B.** (-3)
- **C.** 3

D. 5

Zadanie 2. (0-1)

Funkcja f jest określona wzorem $f(x) = \frac{x^2 + 5x + 6}{x^2 + 9}$ dla każdej liczby rzeczywistej x. Zbiorem wszystkich argumentów, dla których funkcja f przyjmuje wartości dodatnie, jest

- **A**. (2, 3)
- **B.** (-3, -2)
- **C.** $(-\infty, -2) \cup (3, +\infty)$
- $\mathbf{D}. \left(-\infty, -3\right) \cup \left(-2, +\infty\right)$

Zadanie 3. (0-1)

Wartość wyrażenia $\cos \frac{7\pi}{6} \cdot \operatorname{tg} \frac{4\pi}{3}$ jest równa

- $\mathbf{A}.\left(-\frac{3}{2}\right) \qquad \qquad \mathbf{B}.\left(-\frac{\sqrt{3}}{2}\right)$

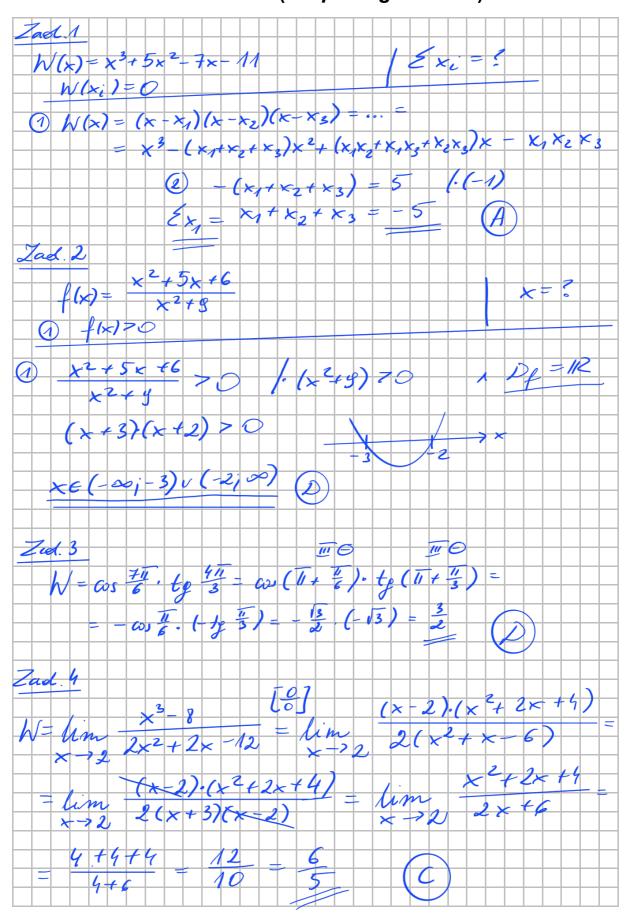
Zadanie 4. (0-1)

Granica $\lim_{x\to 2} \frac{x^3-8}{2x^2+2x-12}$ jest równa

A. $\frac{2}{5}$

D. $\frac{12}{5}$

BRUDNOPIS (nie podlega ocenie)

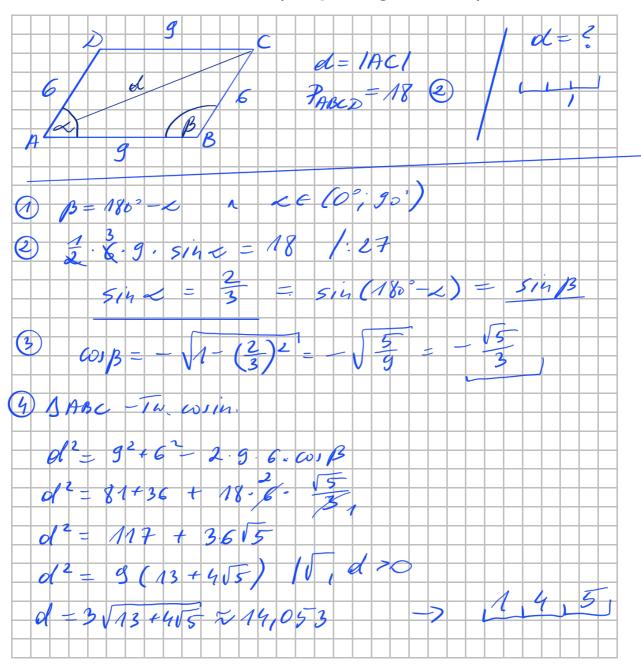


Zadanie 5. (0-2)

Sąsiednie boki równoległoboku mają długość 6 i 9. Pole tego równoległoboku jest równe 18. Oblicz długość dłuższej przekątnej tego równoległoboku.

W poniższe kratki wpisz kolejno – od lewej do prawej – cyfrę dziesiątek, cyfrę jedności i pierwszą cyfrę po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

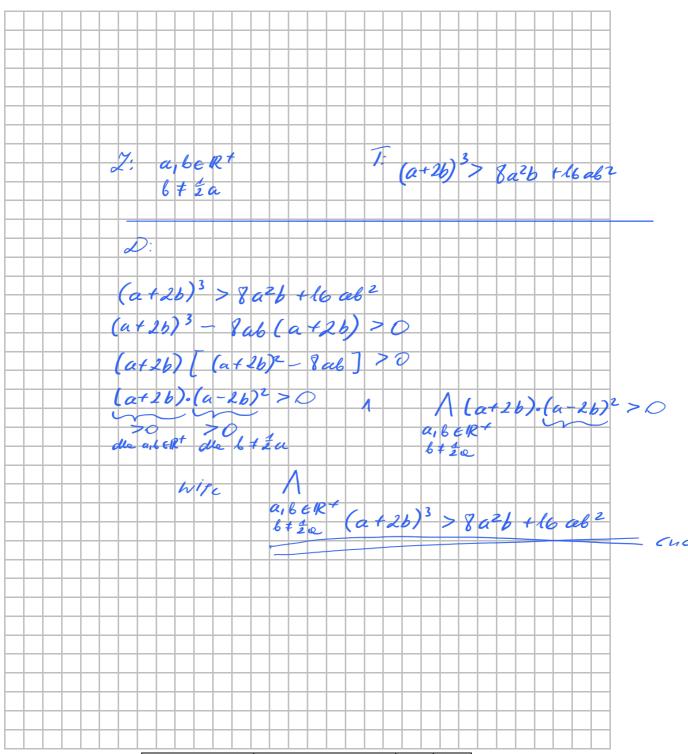
BRUDNOPIS (nie podlega ocenie)



Zadanie 6. (0-3)

Wykaż, że dla każdej dodatniej liczby rzeczywistej a i dla każdej dodatniej liczby rzeczywistej b takich, że $b \neq \frac{1}{2}a$, prawdziwa jest nierówność

$$(a+2b)^3 > 8a^2b + 16ab^2$$

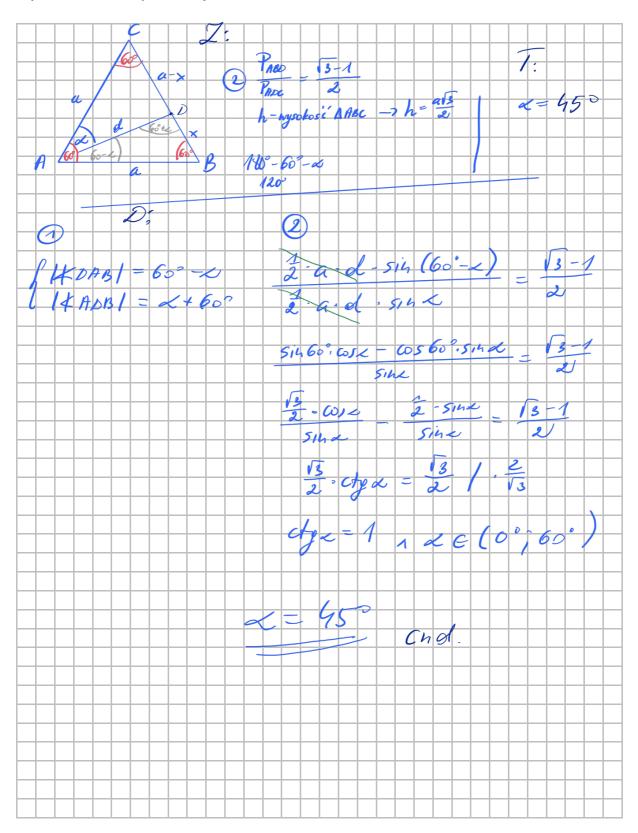


Wypełnia egzaminator	Nr zadania	5.	6.
	Maks. liczba pkt	2	3
	Uzyskana liczba pkt		

Zadanie 7. (0-3)

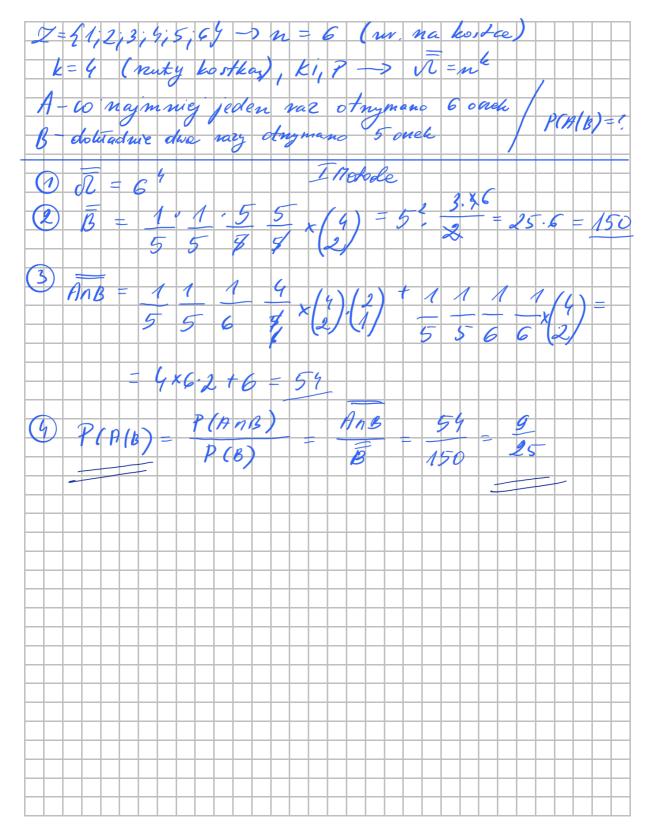
W trójkącie równobocznym ABC punkt D leży na boku BC. Stosunek pola trójkąta ABD do pola trójkąta ADC jest równy $\frac{\sqrt{3}-1}{2}$.

Wykaż, że miara kąta DAC jest równa 45°.



Zadanie 8. (0-3)

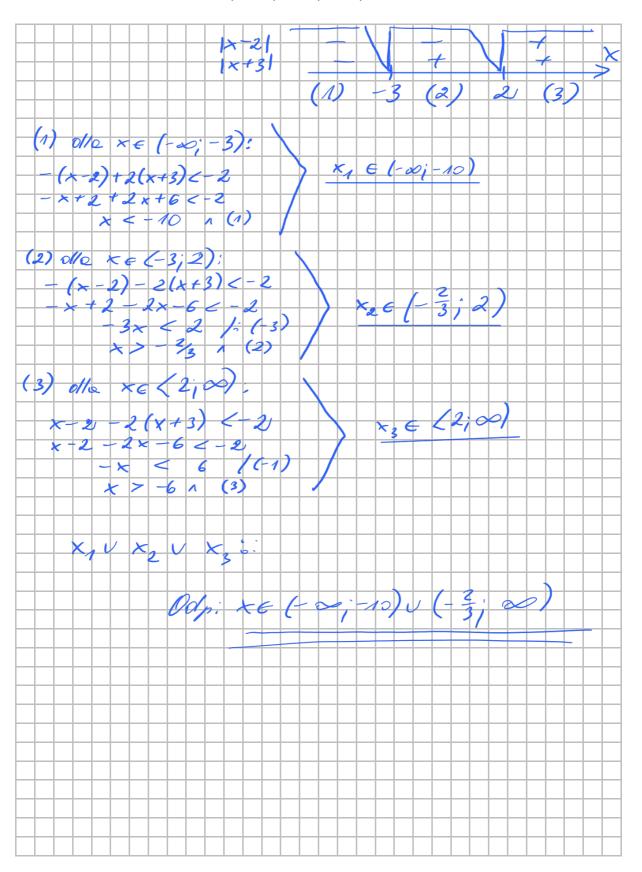
Doświadczenie losowe polega na czterokrotnym rzucie symetryczną sześcienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego oczka do sześciu oczek. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że otrzymamy co najmniej jeden raz sześć oczek, pod warunkiem że otrzymamy dokładnie dwa razy pięć oczek.



Zadanie 9. (0-4)

Rozwiąż nierówność

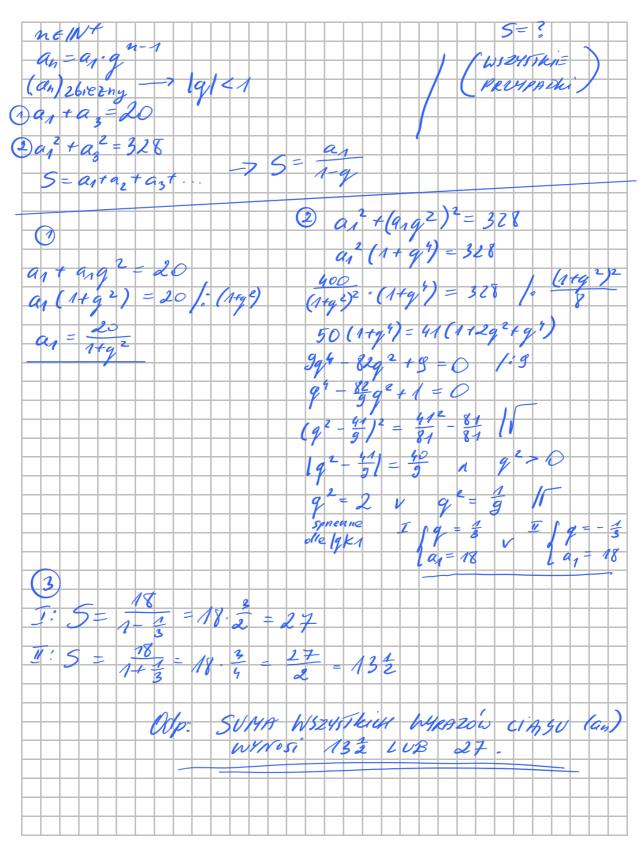
$$|x-2|-2\cdot |x+3|<-2$$



Zadanie 10. (0-4)

Ciąg (a_n) , określony dla każdej liczby naturalnej $n\geq 1$, jest geometryczny i zbieżny. W tym ciągu $a_1+a_3=20$ i $a_1^2+a_3^2=328$.

Oblicz sumę wszystkich wyrazów tego ciągu. Rozważ wszystkie przypadki.

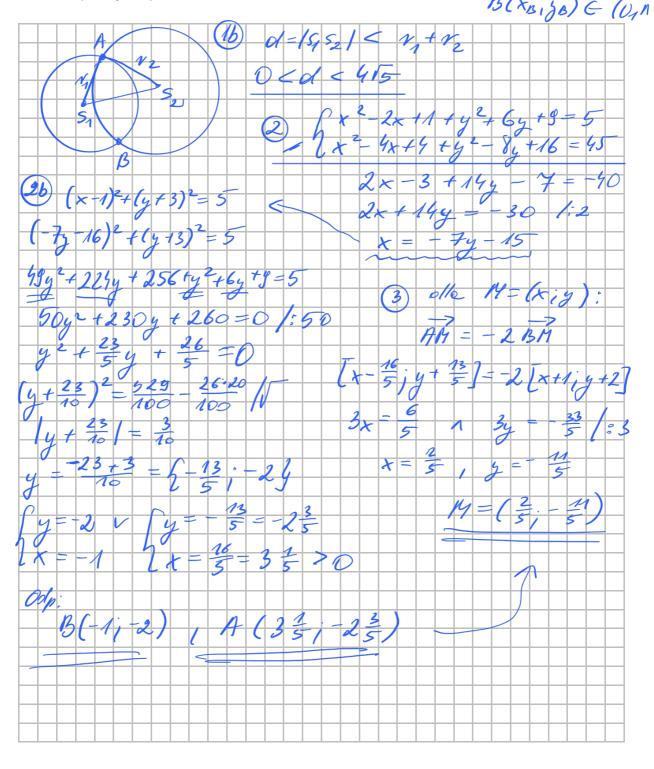


Zadanie 11. (0-5)

W układzie współrzędnych (x,y) dane są okręgi \mathcal{O}_1 oraz \mathcal{O}_2 o równaniach:

- O_1 : $(x-1)^2 + (y+3)^2 = 5$ O_2 : $(x-2)^2 + (y-4)^2 = 45$. O_1 $(S_1 | V_1)$: $S_1 = (I_1 3)$; $V_2 = \sqrt{5}$ O_2 : $(x-2)^2 + (y-4)^2 = 45$.

Te okręgi przecinają się w punktach A oraz B. Punkt A ma pierwszą współrzędną \longrightarrow dodatnią. Punkt M spełnia warunek $\overrightarrow{AM} = -2 \cdot \overrightarrow{BM} \cdot \cancel{3}$ 2 A (xAIJA) E (O1NOZ) B(XBIJB) E (O1NOZ) Oblicz współrzędne punktów A, B oraz M.

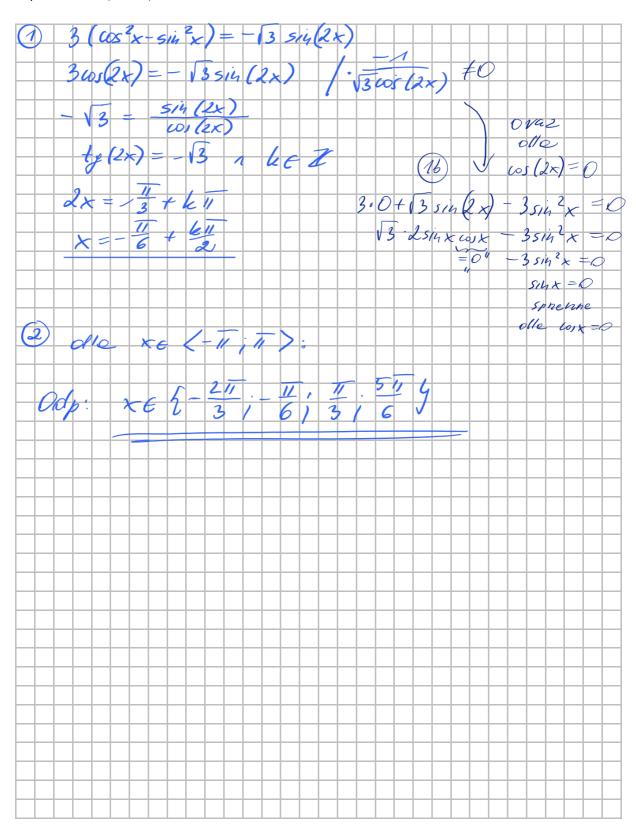


Zadanie 12. (0-5)

Rozwiąż równanie

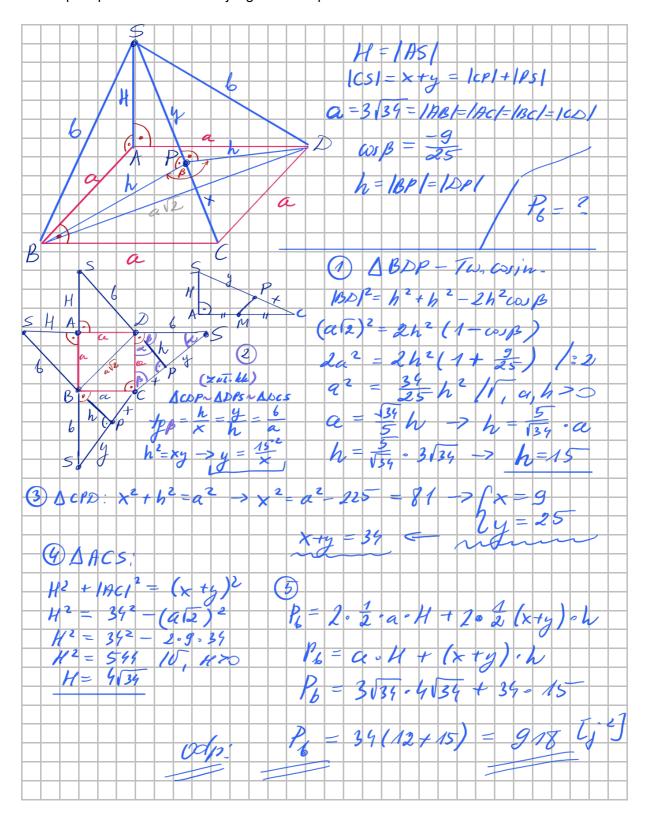
$$3\cos^2 x + \sqrt{3}\sin(2x) - 3\sin^2 x = 0$$

w przedziale $\langle -\pi, \pi \rangle$.



Zadanie 13. (0-5)

Podstawą ostrosłupa ABCDS jest kwadrat ABCD. Krawędź boczna SA jest wysokością ostrosłupa, natomiast krawędź podstawy ma długość $3\sqrt{34}$. Cosinus kąta β między ścianami bocznymi CDS i BCS tego ostrosłupa jest równy $\left(-\frac{9}{25}\right)$. Oblicz pole powierzchni bocznej tego ostrosłupa.

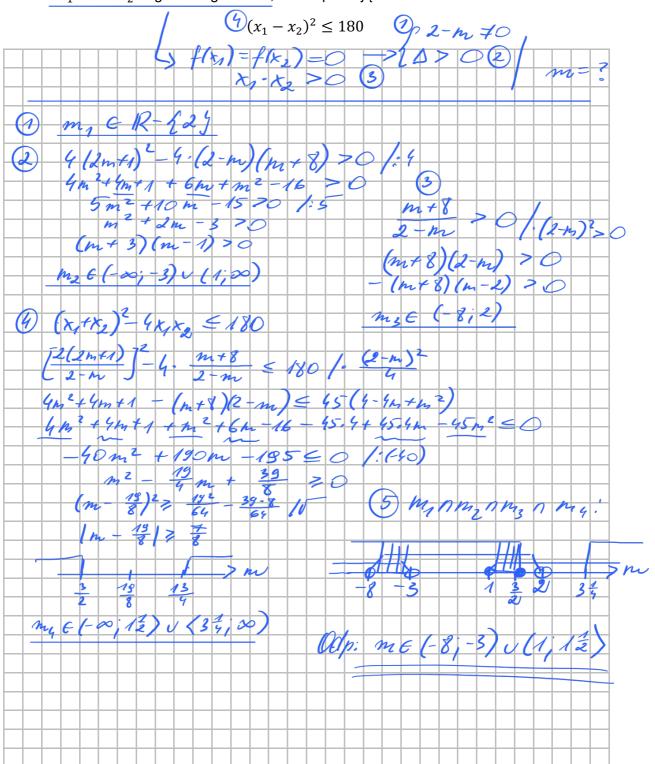


Zadanie 14. (0-6)

Funkcja f jest określona wzorem

$$f(x) = (2 - m)x^2 - 2(2m + 1)x + m + 8$$

dla każdej <u>liczby rzeczywistej</u> x, gdzie m jest liczbą rzeczywistą różną od 2. \nearrow \nearrow \nearrow \nearrow \nearrow Wyznacz wszystkie wartości parametru m, dla których funkcja f ma dokładnie dwa miejsca zerowe x_1 oraz x_2 tego samego znaku, które spełniają warunek



Zadanie 15. (0-6)

Rozważamy wszystkie stożki, których wysokość jest większa od 5, a odległość środka podstawy od tworzącej jest równa 5.

a) Wykaż, że objętość V stożka, jako funkcja wysokości h stożka, wyraża się wzorem

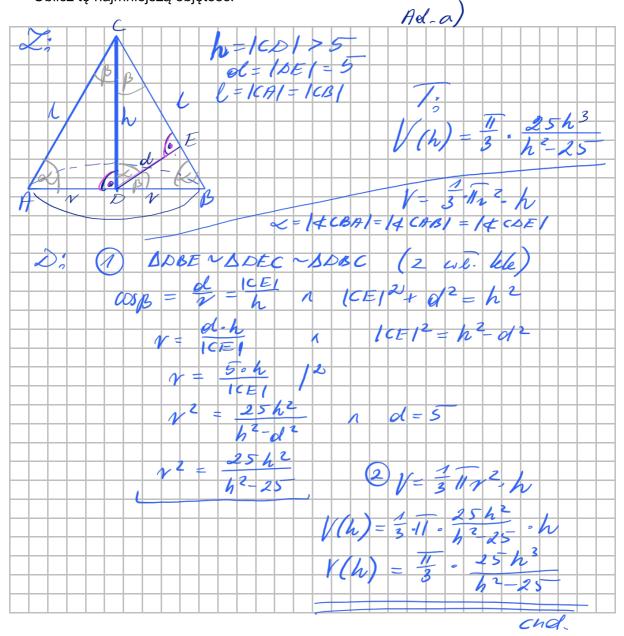
$$V(h) = \frac{\pi}{3} \cdot \frac{25h^3}{h^2 - 25}$$

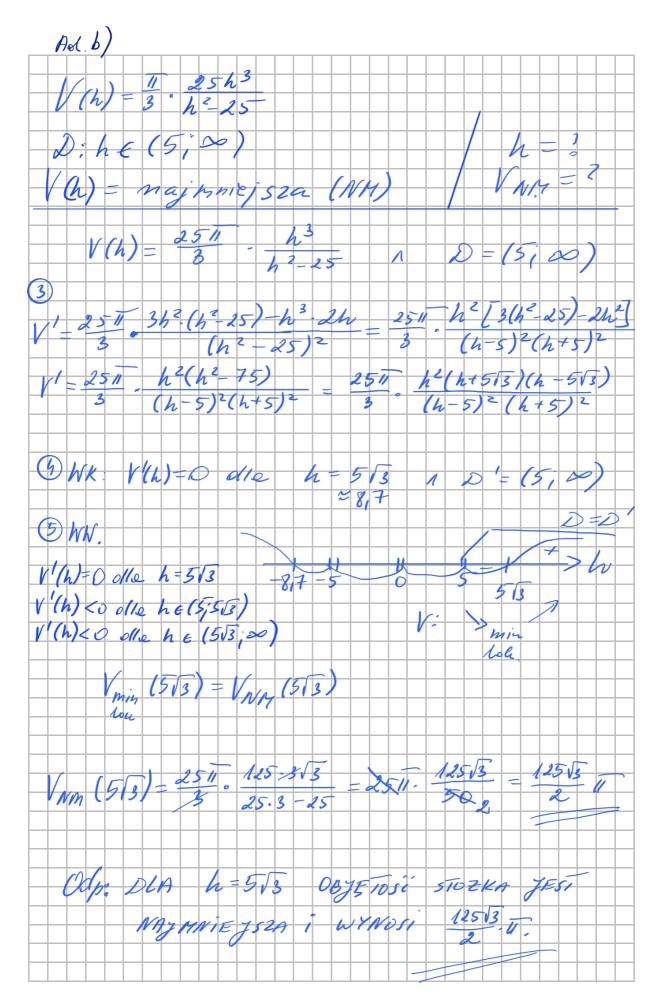
b) Objętość V stożka, jako funkcja wysokości h stożka, wyraża się wzorem

$$V(h) = \frac{\pi}{3} \cdot \frac{25h^3}{h^2 - 25}$$

dla $h \in (5, +\infty)$.

Wyznacz wysokość tego z rozważanych stożków, którego objętość jest najmniejsza. Oblicz tę najmniejszą objętość.





MATEMATYKA Poziom rozszerzony

Formula 2015

MATEMATYKA Poziom rozszerzony

Formula 2015

MATEMATYKA Poziom rozszerzony

Formula 2015